Please enable / Bitte aktiviere JavaScript!
Veuillez activer / Por favor activa el Javascript![ ? ]

2 feb 2017

Ampolleta led v/s fosforecente v/s convercional

Equivalencias potencia (W) ampolleta LED v/s ampolleta convencional. 


La tecnología LED es actualmente la más ecológica de todas las posibles fuentes de luz. En comparación con todos los sistemas existentes para iluminación es el sistema que menos energía consume. Además no contiene mercurio u otros materiales tóxicos, contaminantes o radiactivos. 

Puesto que no requiere generar puentes de plasma como la fluorescencia o calentar el mercurio como el neón, su encendido es prácticamente inmediato incluso a bajas temperaturas. El encendido se produce instantáneamente al 100% 

Equivalencia de luminosidad: 
Buscar una equivalencia de luminosidad entre Watios y LED es algo complicado. 

Hemos aprendido a medir la luz en Watios, lo cual, nos daba una referencia de iluminación, pero cada fabricante da una serie de características al producto, que determinan la capacidad y calidad de emisión de luz. Así pues, no todas las fuentes de luz tradicionales de 40W emiten la misma cantidad real de luz. 

En un LED, los vatios muestran el estado de consumo en funcionamiento, no la capacidad e intensidad de iluminación. 

La eficiencia luminosa 
El parámetro que se utiliza para medir la cantidad de luz real emitida por una fuente de luz es el lumen (lm). La relación entre la cantidad de luz emitida y la potencia consumida (Watios) por una fuente de luz se llama Eficacia Luminosa (lm/W). 

Otro parámetro a tener en cuenta es la Luminacia (Unidad Lux – Lx) que equivale a los lumenes por m2 que emite una fuente de luz. Este parámetro varia en función de la altura en la que está instalada la fuente de luz y la zona que tenemos prevista iluminar. 

Bajo consumo: 
Con una bombilla de LEDs de unos 5W, se logra un efecto lumínico aproximado equivalente a una convencional de 35-40W. Esto se traduce en una elevada reducción del consumo energético de hasta un 85% frente a las bombillas convencionales. 


Tabla de equivalencias en lumen

Los valores indicados a continuación son equivalencias de Vatios a Lumen para bombillas LED y sirve de función orientativa, en ocasiones puede haber pequeñas variaciones.


 Bombilla LED 

 Lumen equivalente(lm) 

 Antiguas incandescentes, halógenas y PAR 
1W
50 - 80lm
10W
1 X 3W
100 - 150lm
15W
3 X 1W
120 - 180lm
25W
4W
190 - 270lm
35W
5W
210 - 290lm
35W - 45W
6W
280 - 420lm
40W
7W
500 - 600lm
45W - 60W
9W
800 - 900lm
50W - 80W
10W
810 - 950lm
60W - 70W
12W
1080 - 1200lm
80W - 100W
14W
1100 - 1300lm
110W
15W
1250 - 1400lm
60W - 120W
18W
1350 - 1500lm
140W
24W
1440 - 1680lm
165W
30W
1800 - 2100lm
200W
40W
3300 - 3800lm
120W - 270W
45W
3600 - 4100lm
150W - 300W
50W
4500 - 5000lm
250W
70W
6300 - 7000lm
400W
80W
6400 - 7200lm
500W

CONSUMO APROXIMADO EN WATTS Y LÚMENES DE POTENCIA LUMINOSA DE DIFERENTES LÁMPARAS PARA ALUMBRADO GENERAL
Valores en lúmenes (lm)
CONSUMO APROXIMADO EN WATTS (W) SEGÚN EL TIPO DE LÁMPARA
LEDs
Incandescentes
Halógenas
CFL y fluorescentes
50 / 80
1,3w
10w
- - -
- - -
110 / 220
3,5w
15w
10w
5w
250 / 440
5w
25w
20w
7w
550 / 650
9w
40w
35w
9w
650 / 800
11w
60w
50w
11w
800 / 1400
15w
75w
70w
18w
1500 / 1700
18w
100w
100w
20w
1900 / 2400
25w
150w
150w
70w
2400 / 2700
30w
200w
170w
80w
2700 / 2800
35w
300w
180w
90w
2900 / 4500
50w
350w
200w
100w
4600 / 7500
80w
400w
250w
150w
7600 / 9500
100w
500w
300w
200w
9700 / 11000
120w
550w
350w
250w
12000 / 14000
150w
700w
500w
300w

Una lámpara LED emite más lúmenes de potencia luminosa a medida que su temperatura de color en grados kelvin (ºK) es más alta. A menos grados kelvin corresponde una “luz cálida”, mientras que a una temperatura mayor la luz que se obtiene es “fría, con más potencia luminosa en lúmenes. 

Por otra parte, la diferencia en lúmenes que proporciona cada lámpara LED responde al grosor de la capa de fósforo que recubre el chip o diodo emisor de luz. Cuando la capa de fósforo es gruesa (de color amarillo ocre) la lámpara emite luz cálida, mientras que cuando la capa es más delgada (de color amarillo claro), emite entonces luz fría. 

Esa capa de fósforo actúa como filtro y su función es convertir la luz azulada que normalmente emite el chip del LED en luz blanca, ya sea cálida o fría, lo cual depende del grosor de dicha capa. Cuando ésta es gruesa, la cantidad de fotones que pueden atravesarla es menor que cuando es más delgada. 

Por tanto, un chip recubierto con una capa de fósforo delgada emitirá “luz fría” con mayor flujo luminoso en lúmenes que otro chip que emita “luz cálida” en el que la capa de fósforo es más gruesa. En el primer caso la capa más delgada ofrece menor resistencia al paso de los fotones que emite el chip, por lo que la potencia luminosa será más intensa, independientemente de que el consumo eléctrico en watt de ambas lámparas sea el mismo. 

Por ejemplo, una lámpara LED de 3,5 watts (W) de alta potencia luminosa con una temperatura de color de 3000 ºK, proporciona una “luz cálida” (warm-light) de 170 lúmenes (lm) aproximadamente, mientras que otra similar, con los mismos watts de consumo eléctrico, pero de 6400 ºK, proporciona una “luz fría” (cool-light) de 270 lúmenes aproximadamente. Por tanto, la potencia luminosa de la lámpara diseñada para emitir luz fría ofrecerá una luz más intensa que la que diseñada para emitir luz cálida, aun teniendo ambas el mismo consumo eléctrico en watts. 

Por supuesto, a medida que el consumo en watt de cada lámpara LED es mayor, la potencia luminosa en lúmenes que emite cada una en particular será más o menos intensa dependiendo si emite luz fría o cálida. 

TABLA COMPARATIVA DE DIFERENTES CARACTERÍSTICAS ENTRE LÁMPARAS LEDs, CFLs, E INCANDESCENTES
 CARACTERÍSTICAS
LEDs
CFLs
Incandescentes*
 Ciclos continuados de encendido/apagado
Indefinido
Acorta su vida útil
Indefinido
 Tiempo de demora para encender
Instantáneo
Algún retardo
Instantáneo
 Emisión de calor
Muy baja
Baja
Alta
 Consumo eléctrico
Bajo
Bajo
Alto
 Eficiencia
Alta
Alta
Baja
 Sensibilidad a la baja temperatura
Ninguna
Alta
Poca
 Sensibilidad a la humedad
Ninguna
Alguna
Poca
 Contenido de materiales tóxicos
Ninguno
Mercurio (Hg)
Ninguno
 Vida útil aproximada en horas de
 funcionamiento
50 000
10 000
1 000
 Permite atenuación
Algunos modelos
Algunos modelos
Todas
 Produce parpadeo
NO
SI
NO
 Peligro por rotura
NO
SI
SI
 Precio
Alto
Medio
Bajo

Cálculo del consumo y costes:
Sin embargo si es importante seguir teniendo ambos valores para poder evaluar mejor la eficiencia de una bombilla. En cualquier caso los Vatios son igual a Voltios (V) multiplicados por los Amperios (I) y definen el consumo si se vincula a una fuente de corriente constante. Por ejemplo una bombilla de 60W en una hora consume 60W/hora es decir 0.06kWh.

Partiendo de la base que esta bombilla incandescente de 60W con 10 horas de funcionamiento en continuo durante 365 días al año consume 219kW en un año:

vatios (V) x horas diarias (h) x total días (d) / 1000
60Vatios x 10horas x 365días / 1000 = 219kW año

Si el precio de la luz por kilovatio fuese de $90, entonces pagaría $19.710 anuales.

Pero si hacemos lo mismo con una bombilla LED de 8W esto cambia por completo:

8Vatios x 10horas x 365días / 1000 = 29.2kW año

Si el precio de la luz por kilovatio hora fuese de $90 entonces una bombilla LED equivalente supondría un gasto de $2.628 anuales.

Esto significa un ahorro anual total del 86,7 % y si contamos esto con todas la bombillas que tenemos en nuestro hogar la cuenta final es una verdadera sorpresa. Por eso decimos que puede ahorrar más invirtiendo en bombillas LED que no con una cuenta de ahorro.

Por tanto recuerde que al ahorro es muy significante si relacionamos los Vatios con Lumen comparando entre una bombilla incandescente tradicional con una bombilla LED.

1 feb 2017

Tipos de paneles fotovoltaicos


Estás pensando en poner paneles fotovoltaicos en tu hogar para así ahorrar en la factura de la luz, pero en cuanto te pones a investigar un poco compruebas que existen muchos tipos y no sabes muy bien cuáles te convienen más y en qué se diferencian.
En este artículo hablaremos de los distintos tipos de paneles solares fotovoltaicos más comunes para uso doméstico que hay disponibles en el mercado (monocristalinos, policristalinos, y de capa fina) y en qué condiciones resultan idóneos.
Alrededor del 90% de la tecnología fotovoltaica se basa en el uso de alguna variación del silicio. El porcentaje de estos paneles destinados a uso doméstico es todavía mayor.
El silicio usado en fotovoltaica puede tener varias formas. La mayor diferencia entre ellas es la pureza del silicio usado. Cuanto más puro es el silicio, mejor alineadas están sus moléculas, y mejor convierte la energía solar en electricidad.
Por tanto, la eficiencia de los paneles solares va de la mano con la pureza del silicio, pero los procesos para aumentar la pureza son muy caros. Por ello, a la hora de elegir un buen panel, lo mejor es tener en cuenta la relación coste-eficiencia por m2.
El silicio cristalino es la base de las celdas monocristalinas y policristalinas.
 

Paneles monocristalinos de celdas de silicio

Las celdas solares de silicio monocristalino (mono-Si), son bastante fáciles de reconocer por su coloración y aspecto uniforme, que indica una alta pureza en silicio, tal como se muestra en la imagen:

Panel solar fotovoltaico monocristalino
Las celdas monocristalinas se fabrican con bloques de silicio o ingots, que son de forma cilíndrica. Para optimizar el rendimiento y reducir los costes de cada celda solar monocristalina, se recortan los cuatro lados de los bloques cilíndricos para hacer láminas de silicio, y que les da esa apariencia característica.
Una de las formas más sencillas para saber si tenemos delante un panel solar monocristalino o policristalino, es que en el policristalino las celdas son perfectamente rectangulares y no tienen esquinas redondeadas.

Ventajas de los paneles solares monocristalinos:

  • Los paneles solares monocristalinos tienen las mayores tasas de eficiencia puesto que se fabrican con silicio de alta pureza. La eficiencia en estos paneles está por encima del 15% y en algunas marcas supera el 21%.
  • La vida útil de los paneles monocristalinos es más larga. De hecho, muchos fabricantes ofrecen garantías de hasta 25 años.
  • Suelen funcionar mejor que paneles policristalinos de similares características en condiciones de poca luz.
  • Aunque el rendimiento en todos los paneles se reduce con temperaturas altas, esto ocurre en menor medida en los policristalinos que en los monocristalinos.
 

Desventajas de los paneles monocristalinos:

  • Son más caros. Valorando el aspecto económico, para uso doméstico resulta más ventajoso usar paneles policristalinos o incluso de capa fina.
  • Si el panel se cubre parcialmente por una sombra, suciedad o nieve, el circuito entero puede averiarse. Si decide poner paneles monocristalinos pero cree que pueden quedar sombreados en algún momento, lo mejor es usar micro inversores solares en vez de inversores en cadena o centrales. Los micro inversores aseguran que no toda la instalación solar se vea afectada por sólo un panel afectado.
  • El proceso Czochralski es el usado para la fabricación de silicio monocristalino. Como resultado, se obtienen bloques cilindrícos. Posteriormente, se recortan cuatro lados para hacer las láminas de silicio. Se derrocha una gran cantidad de silicio en el proceso.
 

Paneles policristalinos de silicio

Los primeros paneles solares policristalinos de silicio aparecieron en el mercado en 1981. A diferencia de los paneles monocristalinos, en su fabricación no se emplea el método Czochralski. El silicio en bruto se funde y se vierte en un molde cuadrado. A continuación se enfría y se corta en láminas perfectamente cuadradas.

Panel solar fotovoltaico policristalino
 

Ventajas de los paneles policristalinos:

  • El proceso de fabricación de los paneles fotovoltaicos policristalinos es más simple, lo que redunda en menor precio. Se pierde mucho menos silicio en el proceso que en el monocristalino.
 

Inconvenientes de los paneles policristalinos:

  • Los paneles policristalinos suelen tener menor resistencia al calor que los monocristalinos. Esto significa que en altas temperaturas un panel policristalino funcionará peor que un monocristalino. El calor además puede afectar a su vida útil, acortándola.
  • La eficiencia de un panel policristalino se sitúa típicamente entre el 13-16%, debido a que no tienen un silicio tan puro como los monocristalinos.
  • Mayor necesidad de espacio. Se necesita cubrir una superficie mayor con paneles policristalinos que con monocristalinos.
 

Paneles solares fotovoltaicos de capa fina

El fundamento de estos paneles es depositar varias capas de material fotovoltaico en una base. Dependiendo de cuál sea el material empleado podemos encontrar paneles de capa fina de silicio amorfo (a-Si), de teluluro de cadmio (CdTe), de cobre, indio, galio y selenio (GIS/CIGS) o células fotovoltaicas orgánicas (OPC)
Dependiendo del tipo, un módulo de capa fina presentan una eficiencia del 7-13%. Debido a que tienen un gran potencial para uso doméstico, son cada vez más demandados.

Panel solar fotovoltaico de capa fina

Ventajas de los paneles fotovoltaicos de capa fina:

  • Se pueden fabricar de forma muy sencilla y en grandes remesas. Esto hace que sean más baratos que los paneles cristalinos
  • Tienen una apariencia muy homogénea
  • Pueden ser flexibles, lo que permite que se adapten a múltiples superficies.
  • El rendimiento no se ve afectado tanto por las sombras y altas temperaturas.
  • Son una gran alternativa cuando el espacio no es problema.


Desventajas de los paneles de capa fina:

  • Aunque son muy baratos, por su menor eficiencia requieren mucho espacio. Un panel monocristalino puede producir cuatro veces más electricidad que uno de capa fina por cada metro cuadrado utilizado.
  • Al necesitar más paneles, también hay que invertir más en estructura metálica, cableado, etc.
  • Los paneles de capa fina tienden a degradarse más rápido que los paneles monocristalinos y policristalinos, por ello los fabricantes también ofrecen menor garantía.
 

¿Qué panel solar necesito para mi caso?

Normalmente, lo normal es pedir presupuesto a varios profesionales que estudiarán tu caso y te podrán orientar en función de tu caso concreto. Podrían darse las siguientes circunstancias:

Que tengas espacio limitado

Para aquellas casas que tengan espacio limitado, los paneles cristalinos son la mejor opción. Aparte hoy en día, los paneles finos todavía no están muy extendidos por lo que muchos instaladores ni los ofrecen.
Normalmente encontrarás paneles de 180, 200 y 220 watios con las mismas dimensiones. Así que si el espacio es algo importante, escoge los que den más potencia.
Dentro de los cristalinos, los monocristalinos son más eficientes en cuanto a espacio aunque son más caros. Si tienes un panel monocristalino y uno policristalino, ambos de 220 watios, el policristalino será más pequeño.
 

Que busques el precio más bajo

Si lo que buscas es hacer la menor inversión posible, pide presupuestos de paneles de capa fina que son más baratos que los monocristalinos y policristalinos. Pero no olvides que también conllevan una mayor estructura y materiales adicionales, no te quedes sólo en el precio del panel en sí.